Air-to-air missile

Missile fired from the air at airborne targets
A USAF F-22 fires an AIM-120 AMRAAM
Two F-15Es from the 90th Fighter Squadron USAF, from Elmendorf Air Force Base, Alaska, fire a pair of AIM-7Ms during a training mission.
Meteor (missile) for Saab 39 Gripen, Dassault Rafale and Eurofighter Typhoon fighter jets.
An IRIS-T air-to-air missile of the German Air Force.
File:Python5-missile001.jpg
The newest and the oldest member of Rafael's Python family of AAM for comparisons, Python-5 (displayed lower-front) and Shafrir-1 (upper-back)

An air-to-air missile (AAM) is a missile fired from an aircraft for the purpose of destroying another aircraft. AAMs are typically powered by one or more rocket motors, usually solid fueled but sometimes liquid fueled. Ramjet engines, as used on the Meteor, are emerging as propulsion that will enable future medium- to long-range missiles to maintain higher average speed across their engagement envelope.

Air-to-air missiles are broadly put in two groups. Those designed to engage opposing aircraft at ranges of less than 16 km are known as short-range or "within visual range" missiles (SRAAMs or WVRAAMs) and are sometimes called "dogfight" missiles because they are designed to optimize their agility rather than range. Most use infrared guidance and are called heat-seeking missiles. In contrast, medium- or long-range missiles (MRAAMs or LRAAMs), which both fall under the category of beyond-visual-range missiles (BVRAAMs), tend to rely upon radar guidance, of which there are many forms. Some modern ones use inertial guidance and/or "mid-course updates" to get the missile close enough to use an active homing sensor. The concepts of air-to-air missiles and surface-to-air missiles are very closely related, and in some cases versions of the same weapon may be used for both roles, such as the ASRAAM and Sea Ceptor.

History

The air-to-air missile grew out of the unguided air-to-air rockets used during the First World War. Le Prieur rockets were sometimes attached to the struts of biplanes and fired electrically, usually against observation balloons, by such early pilots as Albert Ball and A. M. Walters.[1] Facing the Allied air superiority, Germany in World War II invested limited effort into missile research, initially adapting the projectile of the unguided 21 cm Nebelwerfer 42 infantry barrage rocket system into the air-launched BR 21 anti-aircraft rocket in 1943; leading to the deployment of the R4M unguided rocket and the development of various guided missile prototypes such as the Ruhrstahl X-4.

The US Navy and US Air Force began equipping guided missiles in 1956, deploying the USAF's AIM-4 Falcon and the USN's AIM-7 Sparrow and AIM-9 Sidewinder. Post-war research led the Royal Air Force to introduce Fairey Fireflash into service in 1957 but their results were unsuccessful. The Soviet Air Force introduced its K-5 (missile) into service in 1957. As missile systems have continued to advance, modern air warfare consists almost entirely of missile firing. The use of beyond-visual-range combat became so pervasive in the US that early F-4 variants were armed only with missiles in the 1960s. High casualty rates during the Vietnam War caused the US to reintroduce autocannon and traditional dogfighting tactics but the missile remains the primary weapon in air combat.

In the Falklands War British Harriers, using AIM-9L missiles were able to defeat faster Argentinian opponents.[2] Since the late 20th century all-aspect heat-seeking designs can lock-on to a target from various angles, not just from behind, where the heat signature from the engines is strongest. Other types rely on radar guidance (either on-board or "painted" by the launching aircraft).

Use of air-to-air missiles as surface-to-air missiles

In 1999 R-73 missile were adapted by Serb forces for surface to air missiles. The Houthi movement Missile Research and Development Centre and the Missile Force have tried to fire R-27/R-60/R-73/R-77 against Saudi aircraft. Using stockpiles of missiles from Yemeni Air Force stocks. The issue for the R-27 and R-77 is the lack of a radar to support their guidance to the target. However the R-73 and R-60 are infra-red heat seeking missiles. They only require, power, liquid nitrogen "to cool the seeker head" and a pylon to launch the missile. These missiles have been paired with a "US made FLIR Systems ULTRA 8500 turrets". Only one near miss has been verified and that was a R-27T fired at Royal Saudi Air Force F-15SA. However the drawback is that these missiles are intended to be fired from one jet fighter against another. So the motors and fuel load are smaller than a purpose built surface to air missile.[3]

For the West the Norwegian-American made NASAMS rely on using AIM-9 Sidewinder, IRIS-T and AMRAAM (the ER version) missiles to intercept targets. None of these missiles require modifications and hence it can take missiles straight from an aircraft. [4] However NASAMS remain a concept that is yet to be combat tested, it has only successfully engaged a simulated cruise missile. If deployed to Ukraine it will be the first time that this missile system has been used in combat. [5]

Warhead

A conventional explosive blast warhead, fragmentation warhead, or continuous rod warhead (or a combination of any of those three warhead types) is typically used in the attempt to disable or destroy the target aircraft. Warheads are typically detonated by a proximity fuze or by an impact fuze if it scores a direct hit. Less commonly, nuclear warheads have been mounted on a small number of air-to-air missile types (such as the AIM-26 Falcon) although these are not known to have ever been used in combat.

Guidance

AIM-9L Captive Air Training Missile (CATM) with inert warhead and rocket motor for training purposes.

Guided missiles operate by detecting their target (usually by either radar or infrared methods, although rarely others such as laser guidance or optical tracking), and then "homing" in on the target on a collision course.

Although the missile may use radar or infra-red guidance to home on the target, the launching aircraft may detect and track the target before launch by other means. Infra-red guided missiles can be "slaved" to an attack radar in order to find the target and radar-guided missiles can be launched at targets detected visually or via an infra-red search and track (IRST) system, although they may require the attack radar to illuminate the target during part or all of the missile interception itself.

Radar guidance

Radar guidance is normally used for medium- or long-range missiles, where the infra-red signature of the target would be too faint for an infra-red detector to track. There are three major types of radar-guided missile – active, semi-active, and passive.

Radar-guided missiles can be countered by rapid maneuvering (which may result in them "breaking lock", or may cause them to overshoot), deploying chaff or using electronic counter-measures.

Active radar homing

Active radar (AR)-guided missiles carry their own radar system to detect and track their target. However, the size of the radar antenna is limited by the small diameter of missiles, limiting its range which typically means such missiles are launched at a predicted future location of the target, often relying on separate guidance systems such as Global Positioning System, inertial guidance, or a mid-course update from either the launching aircraft or other system that can communicate with the missile to get the missile close to the target. At a predetermined point (frequently based on time since launch or arrival near the predicted target location) the missile's radar system is activated (the missile is said to "go active"), and the missile then homes in on the target.

If the range from the attacking aircraft to the target is within the range of the missile's radar system, the missile can "go active" immediately upon launch.

The great advantage of an active radar homing system is that it enables a "fire-and-forget" mode of attack, where the attacking aircraft is free to pursue other targets or escape the area after launching the missile.

Semi-active radar homing

Semi-active radar homing (SARH) guided missiles are simpler and more common. They function by detecting radar energy reflected from the target. The radar energy is emitted from the launching aircraft's own radar system.

However, this means that the launch aircraft has to maintain a "lock" on the target (keep illuminating the target aircraft with its own radar) until the missile makes the interception. This limits the attacking aircraft's ability to maneuver, which may be necessary should threats to the attacking aircraft appear.

An advantage of SARH-guided missiles is that they are homing on the reflected radar signal, so accuracy actually increases as the missile gets closer because the reflection comes from a "point source": the target. Against this, if there are multiple targets, each will be reflecting the same radar signal and the missile may become confused as to which target is its intended victim. The missile may well be unable to pick a specific target and fly through a formation without passing within lethal range of any specific aircraft. Newer missiles have logic circuits in their guidance systems to help prevent this problem.

At the same time, jamming the missile lock-on is easier because the launching aircraft is further from the target than the missile, so the radar signal has to travel further and is greatly attenuated over the distance. This means that the missile may be jammed or "spoofed" by countermeasures whose signals grow stronger as the missile gets closer. One counter to this is a "home on jam" capability in the missile that allows it to home in on the jamming signal.

Beam riding

An early form of radar guidance was "beam-riding" (BR). In this method, the attacking aircraft directs a narrow beam of radar energy at the target. The air-to-air missile was launched into the beam, where sensors on the aft of the missile controlled the missile, keeping it within the beam. So long as the beam was kept on the target aircraft, the missile would ride the beam until making the interception.

While conceptually simple, the move is hard because of the challenge of simultaneously keeping the beam solidly on the target (which couldn't be relied upon to cooperate by flying straight and level), continuing to fly one's own aircraft, and monitoring enemy countermeasures.

An added complication was that the beam will spread out into a cone shape as the distance from the attacking aircraft increases. This will result in less accuracy for the missile because the beam may actually be larger than the target aircraft when the missile arrives. The missile could be securely within the beam but still not be close enough to destroy the target.

Infrared guidance

File:HAL Tejas (LSP-07) firing Python-5 missile better visibility.png
An infrared homing Python-5 AAM being fired from HAL Tejas fighter

Infrared guided (IR) missiles home on the heat produced by an aircraft. Early infra-red detectors had poor sensitivity, so could only track the hot exhaust pipes of an aircraft. This meant an attacking aircraft had to maneuver to a position behind its target before it could fire an infra-red guided missile. This also limited the range of the missile as the infra-red signature soon become too small to detect with increasing distance and after launch the missile was playing "catch-up" with its target. Early infrared seekers were unusable in clouds or rain (which is still a limitation to some degree) and could be distracted by the sun, a reflection of the sun off of a cloud or ground object, or any other "hot" object within its view.

More modern infra-red guided missiles can detect the heat of an aircraft's skin, warmed by the friction of airflow, in addition to the fainter heat signature of the engine when the aircraft is seen from the side or head-on. This, combined with greater maneuverability, gives them an "all-aspect" capability, and an attacking aircraft no longer had to be behind its target to fire. Although launching from behind the target increases the probability of a hit, the launching aircraft usually has to be closer to the target in such a tail-chase engagement.

An aircraft can defend against infra-red missiles by dropping flares that are hotter than the aircraft, so the missile homes in on the brighter, hotter target. In turn, IR missiles may employ filters to enable it to ignore targets whose temperature is not within a specified range.

Towed decoys which closely mimic engine heat and infra-red jammers can also be used. Some large aircraft and many combat helicopters make use of so-called "hot brick" infra-red jammers, typically mounted near the engines. Current research is developing laser devices which can spoof or destroy the guidance systems of infra-red guided missiles. See Infrared countermeasure.

Start of the 21st century missiles such as the ASRAAM use an "imaging infrared" seeker which "sees" the target (much like a digital video camera), and can distinguish between an aircraft and a point heat source such as a flare. They also feature a very wide detection angle, so the attacking aircraft does not have to be pointing straight at the target for the missile to lock on. The pilot can use a helmet mounted sight (HMS) and target another aircraft by looking at it, and then firing. This is called "off-boresight" launch. For example, the Russian Su-27 is equipped with an infra-red search and track (IRST) system with laser rangefinder for its HMS-aimed missiles.

Electro-optical

A recent advancement in missile guidance is electro-optical imaging. The Israeli Python-5 has an electro-optical seeker that scans designated area for targets via optical imaging. Once a target is acquired, the missile will lock-on to it for the kill. Electro-optical seekers can be programmed to target vital area of an aircraft, such as the cockpit. Since it does not depend on the target aircraft's heat signature, it can be used against low-heat targets such as UAVs and cruise missiles. However, clouds can get in the way of electro-optical sensors.[6]

Passive anti-radiation

Evolving missile guidance designs are converting the anti-radiation missile (ARM) design, pioneered during Vietnam and used to home in against emitting surface-to-air missile (SAM) sites, to an air intercept weapon. Current air-to-air passive anti-radiation missile development is thought to be a countermeasure to airborne early warning and control (AEW&C – also known as AEW or AWACS) aircraft which typically mount powerful search radars.

Due to their dependence on target aircraft radar emissions, when used against fighter aircraft passive anti-radiation missiles are primarily limited to forward-aspect intercept geometry.[7] For examples, see Vympel R-27 and Brazo.

Another aspect of passive anti-radiation homing is the "home on jam" mode which, when installed, allows a radar-guided missile to home in on the jammer of the target aircraft if the primary seeker is jammed by the electronic countermeasures of the target aircraft

Design

Air-to-air missiles are typically long, thin cylinders in order to reduce their cross section and thus minimize drag at the high speeds at which they travel. Missiles are divided into five primary systems (moving forward to aft): seeker, guidance, warhead, rocket motor, and control actuation.

At the front is the seeker, either a radar system, radar homer, or infra-red detector. Behind that lies the avionics which control the missile. Typically after that, in the centre of the missile, is the warhead, usually several kilograms of high explosive surrounded by metal that fragments on detonation (or in some cases, pre-fragmented metal).

The rear part of the missile contains the propulsion system, usually a rocket of some type and the control actuation system or CAS. Dual-thrust solid-fuel rockets are common, but some longer-range missiles use liquid-fuel motors that can "throttle" to extend their range and preserve fuel for energy-intensive final maneuvering. Some solid-fuelled missiles mimic this technique with a second rocket motor which burns during the terminal homing phase. There are missiles in development, such as the MBDA Meteor, that "breathe" air (using a ramjet, similar to a jet engine) in order to extend their range.

Modern missiles use "low-smoke" motors – early missiles produced thick smoke trails, which were easily seen by the crew of the target aircraft alerting them to the attack and helping them determine how to evade it.

The CAS is typically an electro-mechanical, servo control actuation system, which takes input from the guidance system and manipulates the airfoils or fins at the rear of the missile that guide or steers the weapon to target.

Missile range

File:Gw-tomphoenix.jpg
A US Navy VF-103 Jolly Rogers F-14 Tomcat fighter launches an AIM-54 Phoenix long-range air-to-air missile. Photo courtesy U.S. Navy Atlantic Fleet.

A missile is subject to a minimum range, before which it cannot maneuver effectively. In order to maneuver sufficiently from a poor launch angle at short ranges to hit its target, some missiles use thrust vectoring, which allow the missile to start turning "off the rail", before its motor has accelerated it up to high enough speeds for its small aerodynamic surfaces to be useful.

Performance

A number of terms frequently crop up in discussions of air-to-air missile performance.

Launch success zone
The Launch Success Zone is the range within which there is a high (defined) kill probability against a target that remains unaware of its engagement until the final moment. When alerted visually or by a warning system the target attempts a last-ditch-manoeuvre sequence.
F-pole
A closely related term is the F-Pole. This is the slant range between the launch aircraft and target, at the time of interception. The greater the F-Pole, the greater the confidence that the launch aircraft will achieve air superiority with that missile.
A-pole
This is the slant range between the launch aircraft and target at the time that the missile begins active guidance or acquires the target with the missile's active seeker. The greater the A-Pole means less time and possibly greater distance that the launch aircraft needs to support the missile guidance until missile seeker acquisition.
No-escape zone
The no-escape zone is the zone within which there is a high (defined) kill probability against a target even if it has been alerted. This zone is defined as a conical shape with the tip at the missile launch. The cone's length and width are determined by the missile and seeker performance. A missile's speed, range and seeker sensitivity will mostly determine the length of this imaginary cone, while its agility (turn rate) and seeker complexity (speed of detection and ability to detect off axis targets) will determine the width of the cone.

Dogfight

Short-range air-to-air missiles used in "dogfighting" are usually classified into five "generations" according to the historical technological advances. Most of these advances were in infrared seeker technology (later combined with digital signal processing).

First generation

Early short-range missiles such as the early Sidewinders and K-13 (missile) (AA-2 Atoll) had infrared seekers with a narrow (30-degree) field of view and required the attacker to position himself behind the target (rear aspect engagement). This meant that the target aircraft only had to perform a slight turn to move outside the missile seeker's field of view and cause the missile to lose track of the target ("break lock").[8]

Second generation

Second-generation missiles utilized more effective seekers that improved the field of view to 45 degrees.

Third generation

This generation introduced "all aspect" missiles, because more sensitive seekers allowed the attacker to fire at a target which was side-on to itself, i.e. from all aspects not just the rear. This meant that while the field-of-view was still restricted to a fairly narrow cone, the attack at least did not have to be behind the target.[8]

Fourth generation

The R-73 (missile) (AA-11 Archer) entered service in 1985 and marked a new generation of dogfight missile. It had a wider field of view and could be cued onto a target using a helmet mounted sight. This allowed it to be launched at targets that would otherwise not be seen by older generation missiles that generally stared forward while waiting to be launched. This capability, combined with a more powerful motor that allows the missile to maneuver against crossing targets and launch at greater ranges, gives the launching aircraft improved tactical freedom.[9]

Other members of the 4th generation use focal plane arrays to offer greatly improved scanning and countermeasures resistance (especially against flares). These missiles are also much more agile, some by employing thrust vectoring (typically gimballed thrust).

Fifth generation

The latest generation of short-range missiles again defined by advances in seeker technologies, this time electro-optical imaging infrared (IIR) seekers that allow the missiles to "see" images rather than single "points" of infrared radiation (heat). The sensors combined with more powerful digital signal processing provide the following benefits:[1]

  • greater infrared counter countermeasures (IRCCM) ability, by being able to distinguish aircraft from infrared countermeasures (IRCM) such as flares.
  • greater sensitivity means greater range and ability to identify smaller low flying targets such as UAVs.
  • more detailed target image allows targeting of more vulnerable parts of aircraft instead of just homing in on the brightest infrared source (exhaust).

Examples of fifth-generation missiles include:

List of missiles by country

File:K-5M Air-to-Air Missile.jpg
A K-5 (missile) air-to-air missile on MiG-19. (Displayed in the Military History Museum and Park in Kecel, Hungary)

For each missile, short notes are given, including an indication of its range and guidance mechanism.

Brazil

Canada

France

Germany

File:Luftwaffe Eurofighter Typhoon.JPG
Luftwaffe IRIS-T and Meteor missiles on a Eurofighter Typhoon

European

India

Iran

Iraq

Israel

Italy

Japan

  • AAM-1 – short-range Type 69 air-to-air missile. copy of U.S. AIM-9B Sidewinder.
  • AAM-2 – short-range AAM-2 air-to-air missile. similar to AIM-4D.
  • AAM-3 – short-range Type 90 air-to-air missile
  • AAM-4 – middle-range Type 99 air-to-air missile
  • AAM-5 – short-range Type 04 air-to-air missile.

People's Republic of China

  • PL-1 – PRC version of the Soviet K-5 (missile) (AA-1 Alkali), retired.
  • PL-2 – PRC version of the Soviet Vympel K-13 (AA-2 Atoll), which was based on AIM-9B Sidewinder. [6] Retired & replaced by PL-5 in PLAAF service.
  • PL-3 – updated version of the PL-2, did not enter service.
  • PL-4 – experimental BVR missile based on AIM-7D, did not enter service.
  • PL-6 – updated version of PL-3, also did not enter service.
  • PL-5 – updated version of the PL-2, known versions include: [7]
    • PL-5A – semi-active radar-homing AAM intended to replace the PL-2, did not enter service. Resembles AIM-9G in appearance.
    • PL-5B – IR version, entered service in the 1990s to replace the PL-2 SRAAM. Limited off-boresight
    • PL-5C – Improved version comparable to AIM-9H or AIM-9L in performance
    • PL-5E – All-aspect attack version, resembles AIM-9P in appearance.
  • PL-7 – PRC version of the IR-homing French R550 Magic AAM, did not enter service. [8]
  • PL-8 – PRC version of the Israeli Rafael Python 3 [9]
  • PL-9 – short-range IR-guided missile, marketed for export. One known improved version (PL-9C). [10]
  • PL-10(old);– semi-active radar-homing medium-range missile based on the HQ-61 SAM, [11] often confused with PL-11. Did not enter service.
  • PL-10(new)/PL-ASR – short-range off-boresight all-aspect IR-guided missile.
  • PL-11 – medium-range air-to-air missile (MRAAM), based on the HQ-61C & Italian Aspide (AIM-7) technology. Limited service with J-8-B/D/H fighters. Known versions include: [12]
    • PL-11 – MRAAM with semi-active radar homing, based on the HQ-61C SAM and Aspide seeker technology, exported as FD-60 [13]
    • PL-11A – Improved PL-11 with increased range, warhead, and more effective seeker. The new seeker only requires fire-control radar guidance during the terminal stage, providing a basic LOAL (lock-on after launch) capability.
    • PL-11B – Also known as PL-11 AMR, improved PL-11 with AMR-1 active radar-homing seeker.
    • LY-60 – PL-11 adopted for navy ships for air-defense, sold to Pakistan but does not appear to be in service with the Chinese Navy. [14]
  • PL-12 (SD-10) – medium-range active radar missile [15]
    • PL-12A – with upgraded motor
    • PL-12B – with upgraded guidance
    • PL-12C – with foldable tailfins
    • PL-12D – with belly inlet and ramjet motors
  • F80 – medium-range active radar missile
  • PL-15 – long-range active radar missile
  • TY-90 – light IR-homing air-to-air missile designed for helicopters [16]

Soviet Union/Russian Federation

South Africa

  • A-Darter – Short-range IR (With Brazil)
  • V3 Kukri – Short-range IR
  • R-Darter – Beyond-visual-range (BVR) radar-guided missile

Taiwan

Turkey

United Kingdom

  • Fireflash – short-range beam-riding
  • Firestreak – short-range IR
  • Red Top – short-range IR
  • Taildog/SRAAM – short-range IR
  • Skyflash – medium-range radar-guided missile based on the AIM-7E2, said to have quick warm-up times of 1 to 2 seconds.
  • AIM-132 ASRAAM – short-range IR
  • MBDA Meteor – long-range active radar-guided missile, pending contract for integration on Eurofighter Typhoon.[18]

United States

Typical air-to-air missiles

Weight Rocket Name Country of origin Period of manufacture and use Warhead weight Warhead types Range Speed
43.5 kg Molniya R-60 Template:USSR
Template:RUS
1974– 3 kg expanding-rod warhead 8 km Mach 2.7
82.7 kg K-5 Template:USSR
Template:RUS
1957–1977 13 kg High explosive warhead 2–6 km Mach 2.33
86 kg Raytheon AIM-9 Sidewinder  United States 1956– 9.4 kg Annular blast fragmentation 18 km Mach 2.5
87.4 kg Diehl IRIS-T  Germany 2005– 11.4 kg HE/fragmentation 25 km Mach 3
88 kg MBDA AIM-132 ASRAAM  United Kingdom 2002– 10 kg Blast/fragmentation 25 km Mach 3+
89 kg Matra R550 Magic/Magic 2  France 1976–1986 (Magic)
1986– (Magic 2)
12.5 kg Blast/fragmentation 20 km Mach 2.7
105 kg Vympel R-73 Template:RUS 1982– 7.4 kg Fragmentation 20–40 km Mach 2.5
112 kg MBDA MICA-EM/-IR  France 1996– (EM)
2000– (IR)
12 kg Blast/fragmentation
(focused splinters HE)
>60 km Mach 4
118 kg Rafael Derby  Israel 1990– 23 kg Blast/fragmentation 50 km Mach 4
136 kg de Havilland Firestreak  United Kingdom 1957–1988 22.7 kg Annular Blast Fragmentation 6.4 km Mach 3
152 kg Raytheon AIM-120D AMRAAM  United States 2008 18 kg Blast/fragmentation >160 km Mach 4
152 kg Raytheon AIM-120C AMRAAM  United States 1996 18 kg Blast/fragmentation >105 km Mach 4
152 kg Raytheon AIM-120B AMRAAM  United States 1994– 23 kg Blast/fragmentation 55–75 km Mach 4
154 kg Hawker Siddeley Red Top  United Kingdom 1964–1988 31 kg Annular Blast Fragmentation 12 km Mach 3.2
154 kg Astra Missile  India 2010– 15 kg HE fragmentation directional warhead 110-160 km[30] Mach 4.5+
175 kg Vympel R-77 Template:RUS 1994– 22 kg Blast/fragmentation 80–160 km Mach 4.5
180 kg PL-12 Template:CHN 2007– ? ? 70–100 km Mach 4
184 kg Sky Sword II(TC-2) Template:ROC-TW 1999 22 kg Blast/fragmentation 60 km Mach 4
184 kg Sky Sword IIC(TC-2C) Template:ROC-TW 2017 22 kg Blast/fragmentation 100 km Mach 6
190 kg MBDA Meteor  United Kingdom Template:EUR 2016– ? Blast/fragmentation 200 km[31] Mach 4+
220 kg AAM-4 Script error: The function "" does not exist. 1999– ? Directional explosive warhead 100–120 km Mach 4–5
230 kg AIM-7 Sparrow  United States 1959–1982 40 kg High explosive blast-fragmentation 22–85 km Mach 2.5–4
253 kg R-27 Template:USSR
Template:RUS
1983– 39 kg Blast/fragmentation, or continuous rod 40–170 km Mach 4.5
450–470 kg AIM-54 Phoenix  United States 1974–2004 61 kg High explosive 190 km Mach 5
475 kg R-40 Template:USSR
Template:RUS
1970– 38–100 kg Blast fragmentation 50–80 km Mach 2.2–4.5
490 kg R-33 Template:USSR
Template:RUS
1981– 47.5 kg HE/fragmentation warhead 120–220 km Mach 4.5–6
600 kg R-37 Template:USSR
Template:RUS
1989– 60 kg HE fragmentation directional warhead 150–398 km Mach 6
748 kg K-100 Template:RUS/ India 2010– 50 kg HE fragmentation directional warhead 200–400 km Mach 3.3

See also

References

  1. Albert Ball VC. pp. 90–91.
  2. "The History Channel". Archived from the original on May 19, 2009.
  3. Dario Leone (2019-07-17). "Here's how Houthis were able to deploy R-27/R-60/R-73/R-77 Air-to-Air Missiles as SAMs against Saudi-led Coalition Aircraft". theaviationgeekclub.com. Retrieved 2022-10-14.
  4. Sakshi Tiwari (2022-09-11). "First Of Its Kind Test! US Successfully Fired AIM-9X Sidewinder, AMRAAM & AMRAAM-ER In Layered Missile Defense Experiment". eurasiantimes.com. Retrieved 2022-10-14.
  5. Stephen Bryen (2022-07-09). "US air defense system delivery hopes to save Kiev". asiatimes.com. Retrieved 2022-10-14.
  6. "Atmospheric Effects on Electro-optics". Retrieved 4 November 2014.
  7. Carlo Kopp (Aug 2009). "The Russian Philosophy of BVR Air Combat". Airpower Australia, Retrieved April 2010
  8. 8.0 8.1 Carlo Kopp (April 1997). "Fourth Generation AAMs – The Rafael Python 4". Australian Aviation. 1997 (April). Retrieved 2007-03-08.
  9. Carlo Kopp (August 1998). "Helmet Mounted Sights and Displays". Air Power International. Retrieved 2007-03-08.
  10. "Управляемая ракета малой дальности Р-73 | Ракетная техника". missilery.info.
  11. "УПРАВЛЯЕМАЯ РАКЕТА СРЕДНЕЙ ДАЛЬНОСТИ Р-77". Archived from the original on 2020-02-02.
  12. "Управляемая ракета средней дальности Р-77 (РВВ-АЕ) | Ракетная техника". missilery.info.
  13. "Defense & Security Intelligence & Analysis: IHS Jane's | IHS". articles.janes.com.
  14. "Р-37 МКБ "Вымпел"". www.testpilot.ru.
  15. Lake, Jon. "A-Darter Missile Certified by Brazil and South Africa". Aviation International News. Retrieved 2021-11-29.
  16. "Swedish AF Gripens now carry Meteor missiles". UPI. Retrieved 2021-11-24.
  17. "Communiqué Premiers tirs METEOR effectués par les Rafale de l'armée de l'Air et de la Marine nationale". Retrieved 14 August 2019.
  18. 18.0 18.1 "First Tranche 3 Typhoon Readied For Flight". Retrieved 4 November 2014.
  19. 19.0 19.1 "Allgemeine Luftkampfraketen". Archived from the original on 22 January 2015. Retrieved 4 November 2014.
  20. "After successful development trials, Astra missile ready for production". 18 September 2017.
  21. "Fatter – Jane's Air-Launched Weapons". Retrieved 4 November 2014.
  22. "Sedjil – Jane's Air-Launched Weapons". Retrieved 4 November 2014.
  23. "Iranian F-14 Tomcat's new indigenous air-to-air missile is actually an (improved?) AIM-54 Phoenix replica". 26 September 2013. Retrieved 11 February 2015.
  24. "The air-to-air missile with Ramjet engine from TÜBITAK Sage: GÖKHAN". 25 June 2021.
  25. Drew2016-02-25T18:50:15+00:00, James. "USAF reveals slimmed-down SACM air-to-air missile concept". Flight Global.
  26. "Raytheon selected to deliver next-generation tactical air-to-air missile solutions | IHS Jane's 360". September 1, 2016. Archived from the original on 2016-09-01.
  27. "Raytheon to research tactical missile capabilities". UPI.
  28. "SACM: Affordable, Highly-Lethal Missile". SOFREP.
  29. "StackPath". www.militaryaerospace.com.
  30. "Deal for desi Astra Mk 1 sealed, India set to test next-gen air-to-air missile 'this month'". 1 June 2022.
  31. "German air force declares Meteor missile ready for Eurofighter fleet". 2 August 2021.

Bibliography

External links